STAR TEMPERATURE AND SIZE

TEMPERATURE FROM THE LINE SPECTRUM: THE SPECTRAL CLASS

If λ_{peak} isn't known, thanks to the work of Cecilia Payne-Gaposchkin (1900-1979), the spectral class can be used to estimate the temperature. This is done by interpolation between the minimum and maximum temperatures of each spectral class:

Temperature from Spectral Type
$$T = T_{\text{max}} - \left\{ \left(\text{subclass} \right) \times \left(\frac{T_{\text{max}} - T_{\text{min}}}{10} \right) \right\}$$

Here the subclass is the number given with the spectral type (e.g. the 2 in Sol's G2), T_{max} is the highest temperature in the spectral class and T_{min} is the lowest.

SIZE OF AN OPAQUE, SPHERICAL STAR: THE STEFAN-BOLTZMANN LAW:

The Stefan-Boltzmann law relates the luminosity of a star to its temperature and its emitting surface area $(4\pi R^2)$

RADIUS FROM LUMINOSITY AND TEMPERATURE $R_{\star} = \sqrt{\frac{L_{\star}}{4\pi\sigma}T^{4}}$

where R_{\star} is the radius of the star in m, σ = 5.67 × 10⁻⁸ W/M²K⁴, R_{\odot} = 6.96 × 10⁸ m, and r_{\oplus} = 1.496 × 10¹¹ m.

STAR	FIELD GUIDE TO THE STARS AND PLANETS TABLE A2				CALCULATED FG A3 LUMINOSITY SIZE					
	V	M _V r _★		Spec.	7 <u>.0</u> 7.0	L _{*,SOL} L _*		$R_{\star} \mid R_{\star}/R_{\boxtimes} \mid R_{\star}/r_{\oplus}$		
	·		ly	Туре	K	In L _{sol}	In Watts	Billions of m	(num- ber)	% %
Polaris (α UMi)	2.0	-4.1	431	F5 I	6,750	3698	1.42 × 10 ³⁰	30.9	44.4	20.7
Rigel (β Ori)	0.12	-6.6	773	B8 I	13,800	36,982	1.42 × 10 ³¹	23.4	33.6	15.6
Sirius (α CMa)	-1.46	1.5	9	AI V	10,650	21.3	8.14 × 10 ²⁷	0.9	1.4	0.6
Aldebaran (α Tau)	0.85	-0.8	65	K5 III	4250	177	6.77 × 10 ²⁸	17.1	24.5	11.4
Betelgeuse (α Ori)	0.5	-5.0	522	M2 I	3400	8472	3.24 × 10 ³⁰	184.5	265	123
Procyon (α CMi)	0.38	2.8	11	F5 IV	6,750	6.4	2.46 × 10 ²⁷	1.3	1.9	0.9

 $L_{\star} = 10$ shines out luminosity L_{\star} shines out luminosity L_{\star} $L_{\star} = 10$, $r_{\star,m} = r_{\star,ly} \times (9.46 \times 10^{15})$ Meters, $L_{SOL} = (3.827 \times 10^{26})$ Watts.